## COMBINATIONAL CIRCUITS

- Introduction
- Analysis Procedure
- Design Methods
- Gate-level (SSI) Design
- Block-Level Design
- Arithmetic Circuits
- Circuit Delays
- Look-Ahead Carry Adder

## INTRODUCTION

- Two classes of logic circuits
  - Combinational
  - Sequential

#### Combinational Circuit

 Each output depends entirely on the immediate (present) inputs.



#### Sequential Circuit

 Each output depends on both present inputs and state.



## ANALYSIS PROCEDURE

Given a combinational circuit, how do you analyze its function?



- Steps:
  - 1. Label the inputs and outputs.
  - 2. Obtain the functions of intermediate points and the outputs.
  - 3. Draw the truth table.

| 5. Draw the truth table.                              | <u>'</u> | •       |    |
|-------------------------------------------------------|----------|---------|----|
| 4. Deduce the functionality of the circuit $\bigcirc$ | Ha       | If adde | r. |

| Α | В | (A+B) | (A'+B') | F1 | F2 |
|---|---|-------|---------|----|----|
| 0 | 0 | 0     | 1       | 0  | 0  |
| 0 | 1 | 1     | 1       | 1  | 0  |
| 1 | 0 | 1     | 1       | 1  | 0  |
| 1 | 1 | 1     | 0       | 0  | 1  |

## **DESIGN METHODS**

- Different combinational circuit design methods:
  - Gate-level design method (with logic gates)
  - Block-level design method (with functional blocks)
- Design methods make use of logic gates and useful function blocks
  - These are available as Integrated Circuit (IC) chips.
  - Types of IC chips (based on packing density): SSI, MSI, LSI, VLSI, ULSI.
- Main objectives of circuit design:
  - Reduce cost (number of gats for small circuits; number of IC packages for complex circuits)
  - Increase speed
  - Design simplicity (re-use blocks where possible)

# GATE-LEVEL (SSI) DESIGN: HALF ADDER (1/2)

- Design procedure:
  - 1. State problem

Example: Build a Half Adder.

2. Determine and label the inputs and outputs of circuit. Example: Two inputs and two outputs labelled, as shown below.



3. Draw the truth table.

|   |   | _ |   |
|---|---|---|---|
| X | Υ | С | S |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

# GATE-LEVEL (SSI) DESIGN: HALF ADDER (2/2)

4. Obtain simplified Boolean functions.

Example: 
$$C = X \cdot Y$$

$$S = X' \cdot Y + X \cdot Y' = X \oplus Y$$

| Χ | Υ | С | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

5. Draw logic diagram.



Half Adder

# GATE-LEVEL (SSI) DESIGN: FULL ADDER (1/5)

- Half adder adds up only two bits.
- To add two binary numbers, we need to add 3 bits (including the *carry*).
  - Example:

 Need Full Adder (so called as it can be made from two half adders).



# GATE-LEVEL (SSI) DESIGN: FULL ADDER (2/5)

Truth table:

| X | Υ | Z | С | S |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |

Note:

Z - carry in (to the current position)

C - carry out (to the next position)

|   | С  |    |    |    |  |
|---|----|----|----|----|--|
| X | 00 | 01 | 11 | 10 |  |
| 0 |    |    | 1  |    |  |
| 1 |    | 1  | 1  | 1  |  |

Using K-map, simplified SOP form:

$$S = ?$$

| V    | ,  | S  |    |    |  |  |
|------|----|----|----|----|--|--|
| X 12 | 00 | 01 | 11 | 10 |  |  |
| 0    |    | 1  |    | 1  |  |  |
| 1    | 1  |    | 1  |    |  |  |

# GATE-LEVEL (SSI) DESIGN: FULL ADDER (3/5)

Alternative formulae using algebraic manipulation:

$$C = X \cdot Y + X \cdot Z + Y \cdot Z$$

$$= X \cdot Y + (X + Y) \cdot Z$$

$$= X \cdot Y + ((X \oplus Y) + X \cdot Y) \cdot Z$$

$$= X \cdot Y + (X \oplus Y) \cdot Z + X \cdot Y \cdot Z$$

$$= X \cdot Y + (X \oplus Y) \cdot Z$$

$$S = X' \cdot Y' \cdot Z + X' \cdot Y \cdot Z' + X \cdot Y' \cdot Z' + X \cdot Y \cdot Z$$

$$= X' \cdot (Y' \cdot Z + Y \cdot Z') + X \cdot (Y' \cdot Z' + Y \cdot Z)$$

$$= X' \cdot (Y \oplus Z) + X \cdot (Y \oplus Z)'$$

$$= X \oplus (Y \oplus Z)$$

# GATE-LEVEL (SSI) DESIGN: FULL ADDER (4/5)

#### Circuit for above formulae:

$$C = X \cdot Y + (X \oplus Y) \cdot Z$$

$$S = X \oplus (Y \oplus Z)$$



Full Adder made from two Half-Adders (+ an OR gate).

# GATE-LEVEL (SSI) DESIGN: FULL ADDER (5/5)

Circuit for above formulae:



Full Adder made from two Half-Adders (+ an OR gate).

## CODE CONVERTERS

 Code converter – takes an input code, translates to its equivalent output code.



- Example: BCD to Excess-3 code converter.
  - Input: BCD code
  - Output: Excess-3 code

## BCD-TO-EXCESS-3 CONVERTER (1/2)

#### Truth table:

|    | BCD |   |   |   | Exce | ess-3 | 8 |   |
|----|-----|---|---|---|------|-------|---|---|
|    | A   | В | С | D | W    | X     | Y | Z |
| 0  | 0   | 0 | 0 | 0 | 0    | 0     | 1 | 1 |
| 1  | 0   | 0 | 0 | 1 | 0    | 1     | 0 | 0 |
| 2  | 0   | 0 | 1 | 0 | 0    | 1     | 0 | 1 |
| 3  | 0   | 0 | 1 | 1 | 0    | 1     | 1 | 0 |
| 4  | 0   | 1 | 0 | 0 | 0    | 1     | 1 | 1 |
| 5  | 0   | 1 | 0 | 1 | ~    | 0     | 0 | 0 |
| 6  | 0   | 1 | 1 | 0 | ~    | 0     | 0 | 1 |
| 7  | 0   | 1 | 1 | 1 | ~    | 0     | 1 | 0 |
| 8  | 1   | 0 | 0 | 0 | 1    | 0     | 1 | 1 |
| 9  | 1   | 0 | 0 | 1 | ~    | ~     | 0 | 0 |
| 10 | 1   | 0 | 1 | 0 | X    | X     | X | X |
| 11 | 1   | 0 | 1 | 1 | X    | X     | X | X |
| 12 | 1   | 1 | 0 | 0 | X    | X     | X | X |
| 13 | 1   | 1 | 0 | 1 | X    | X     | X | X |
| 14 | 1   | 1 | 1 | 0 | X    | X     | X | X |
| 15 | 1   | 1 | 1 | 1 | X    | X     | X | Χ |

#### K-maps:









## BCD-TO-EXCESS-3 CONVERTER (2/2)





| W | = | ? |
|---|---|---|
|   |   |   |

$$X = ?$$





## BLOCK-LEVEL DESIGN

- More complex circuits can also be built using block-level method.
- In general, block-level design method (as opposed to gate-level design) relies on algorithms or formulae of the circuit, which are obtained by decomposing the main problem to sub-problems recursively (until small enough to be directly solved by blocks of circuits).
- Simple examples using 4-bit parallel adder as building blocks:
  - 1. BCD-to-Excess-3 Code Converter
  - 2. 16-bit Parallel Adder
  - 3. Adder cum Subtractor

# 4-BIT PARALLEL ADDER (1/4)

 Consider a circuit to add two 4-bit numbers together and a carry-in, to produce a 5-bit result.



• 5-bit result is sufficient because the largest result is:  $1111_2 + 1111_2 + 1_2 = 11111_2$ 

# 4-BIT PARALLEL ADDER (2/4)

- SSI design technique should not be used here.
- Truth table for 9 inputs is too big:  $2^9 = 512$  rows!

| $X_4X_3X_2X_1$ | $Y_4Y_3Y_2Y_1$ | C <sub>1</sub> | C <sub>5</sub> | S <sub>4</sub> S <sub>3</sub> S <sub>2</sub> S <sub>1</sub> |
|----------------|----------------|----------------|----------------|-------------------------------------------------------------|
| 0000           | 0000           | 0              | 0              | 0000                                                        |
| 0000           | 0000           | 1              | 0              | 0001                                                        |
| 0000           | 0001           | 0              | 0              | 0001                                                        |
| •••            | •••            |                | :              |                                                             |
| 0101           | 1101           | 1              | 1              | 0011                                                        |
|                |                |                |                |                                                             |
| 1111           | 1111           | 1              | 1              | 1111                                                        |

Simplification becomes too complicated.

# 4-BIT PARALLEL ADDER (3/4)

- Alternative design possible.
- Addition formula for each pair of bits (with carry in),

$$C_{i+1}S_i = X_i + Y_i + C_i$$

has the same function as a full adder:

$$C_{i+1} = X_i \cdot Y_i + (X_i \oplus Y_i) \cdot C_i$$
  
$$S_i = X_i \oplus Y_i \oplus C_i$$

# 4-BIT PARALLEL ADDER (4/4)

Cascading 4 full adders via their carries, we get:



## PARALLEL ADDERS

- Note that carry propagated by cascading the carry from one full adder to the next.
- Called Parallel Adder because inputs are presented simultaneously (in parallel). Also called Ripple-Carry Adder.

## BCD-TO-EXCESS-3 CONVERTER (1/2)

- Excess-3 code can be converted from BCD code using truth table:
- Gate-level design can be used since only 4 inputs.
- However, alternative design is possible.
- Use problem-specific formula:

Excess-3 code = BCD Code + 0011<sub>2</sub>

|    | BCD |   |   |   | Ехсе | ess-3 | } |   |
|----|-----|---|---|---|------|-------|---|---|
|    | Α   | В | C | D | W    | Х     | Υ | Z |
| 0  | 0   | 0 | 0 | 0 | 0    | 0     | 1 | 1 |
| 1  | 0   | 0 | 0 | 1 | 0    | 1     | 0 | 0 |
| 2  | 0   | 0 | 1 | 0 | 0    | 1     | 0 | 1 |
| 3  | 0   | 0 | 1 | 1 | 0    | 1     | 1 | 0 |
| 4  | 0   | 1 | 0 | 0 | 0    | 1     | 1 | 1 |
| 5  | 0   | 1 | 0 | 1 | 1    | 0     | 0 | 0 |
| 6  | 0   | 1 | 1 | 0 | 1    | 0     | 0 | 1 |
| 7  | 0   | 1 | 1 | 1 | 1    | 0     | 1 | 0 |
| 8  | 1   | 0 | 0 | 0 | 1    | 0     | 1 | 1 |
| 9  | 1   | 0 | 0 | 1 | 1    | 1     | 0 | 0 |
| 10 | 1   | 0 | 1 | 0 | Χ    | Χ     | Χ | X |
| 11 | 1   | 0 | 1 | 1 | Χ    | X     | X | X |
| 12 | 1   | 1 | 0 | 0 | Χ    | Χ     | Χ | Χ |
| 13 | 1   | 1 | 0 | 1 | Χ    | Χ     | X | Χ |
| 14 | 1   | 1 | 1 | 0 | Х    | Х     | X | X |
| 15 | 1   | 1 | 1 | 1 | Χ    | Χ     | X | X |

## BCD-TO-EXCESS-3 CONVERTER (2/2)

#### Block-level circuit:



A BCD-to-Excess-3
Code Converter

## 16-BIT PARALLEL ADDER

- Larger parallel adders can be built from smaller ones.
- Example: A 16-bit parallel adder can be constructed from four 4-bit parallel adders:



A 16-bit parallel adder

$$\begin{array}{ccc}
\downarrow^{4} & = & \downarrow \downarrow \downarrow \downarrow \\
S_{4}..S_{1} & S_{4}S_{3}S_{2}S_{1}
\end{array}$$

## 4-BIT ADDER CUM SUBTRACTOR (1/3)

- Recall: Subtraction can be done via addition with 2scomplement numbers.
- Hence, we can design a circuit to perform both addition and subtraction, using a parallel adder and some gates.



## 4-BIT ADDER CUM SUBTRACTOR (2/3)

#### Recall:

$$X - Y = X + (-Y)$$
  
=  $X + (2s complement of Y)$   
=  $X + (1s complement of Y) + 1$ 

#### Design requires:

(1) XOR gates, and (2) S connected to carry-in.

## 4-BIT ADDER CUM SUBTRACTOR (3/3)

4-bit adder-cum-subtractor circuit:



## REVISION: HALF ADDER

#### Half adder













## REVISION: FULL ADDER

#### Full adder













## REVISION: PARALLEL ADDER

#### 4-bit parallel adder



## REVISION: CASCADING ADDERS

- Cascading 4 full adders (FAs) gives a 4-bit parallel adder.
  - □ Classical method: 9 input variables → 2<sup>9</sup> = 512 rows in truth table!
- Cascading method can be extended to larger adders.
  - Example: 16-bit parallel adder.



### EXAMPLE

- Application: 6-person voting system.
  - Use FAs and a 4-bit parallel adder.
  - Each FA can sum up to 3 votes.



## MAGNITUDE COMPARATOR (1/4)

- Magnitude comparator: compares 2 values A and B, to check if A>B, A=B, or A<B.</li>
- To design an n-bit magnitude comparator using classical method, it would require 2<sup>2n</sup> rows in truth table!
- We shall exploit regularity in our design.
- Question: How do we compare two 4-bit values A  $(a_3a_2a_1a_0)$  and B  $(b_3b_2b_1b_0)$ ?

# MAGNITUDE COMPARATOR (2/4)

Let 
$$A = A_3A_2A_1A_0$$
,  $B = B_3B_2B_1B_0$ ;

$$X_i = A_i \cdot B_i + A_i' \cdot B_i'$$



# MAGNITUDE COMPARATOR (3/4)

Block diagram of a 4-bit magnitude comparator



## MAGNITUDE COMPARATOR (4/4)

A function F accepts a 4-bit binary value ABCD, and returns 1 if 3 ≤ ABCD ≤ 12, or 0 otherwise. How would you implement F using magnitude comparators and a suitable logic gate?

| A <sub>3</sub><br>A <sub>2</sub><br>A <sub>1</sub><br>A <sub>0</sub> | 4-bit<br>Comp                 |
|----------------------------------------------------------------------|-------------------------------|
| B <sub>3</sub><br>B <sub>2</sub><br>B <sub>1</sub><br>B <sub>0</sub> | (A < B)<br>(A > B)<br>(A = B) |

# CIRCUIT DELAYS (1/5)

Given a logic gate with delay t. If inputs are stable at times t<sub>1</sub>, t<sub>2</sub>, ..., t<sub>n</sub>, then the earliest time in which the output will be stable is:

$$\max(t_1, t_2, ..., t_n) + t$$



 To calculate the delays of all outputs of a combinational circuit, repeat above rule for all gates.

# CIRCUIT DELAYS (2/5)

 As a simple example, consider the full adder circuit where all inputs are available at time 0. Assume each gate has delay t.



# CIRCUIT DELAYS (3/5)

More complex example: 4-bit parallel adder.



# CIRCUIT DELAYS (4/5)

Analyse the delay for the repeated block.



where X<sub>i</sub>, Y<sub>i</sub> are

S<sub>i</sub> stable at 0t, while

C<sub>i</sub> is assumed to
be stable at mt.

Performing the delay calculation:



# CIRCUIT DELAYS (5/5)

#### Calculating:

```
When i=1, m=0; S_1 = 2t and C_2 = 3t
When i=2, m=3; S_2 = 4t and C_3 = 5t
When i=3, m=5; S_3 = 6t and C_4 = 7t
When i=4, m=7; S_4 = 8t and C_5 = 9t
```

In general, an n-bit ripple-carry parallel adder will experience the following delay times:

```
S_n = ?
C_{n+1} = ?
```

- Propagation delay of ripple-carry parallel adders is proportional to the number of bits it handles.
- Maximum delay: ?

## FASTER CIRCUITS

- Three ways of improving the speed of circuits:
  - Use better technology (eg. ECL faster than TTL gates)
     BUT
    - Faster technology is more expensive, needs more power, lower-level of integrations
    - Physical limits (eg. speed of light, size of atom)
  - Use gate-level designs to two-level circuits! (use sumof-products/product-of-sums) BUT
    - Complicated designs for large circuits
    - Product/sum terms need MANY inputs!
  - Use clever look-ahead techniques BUT
    - There are additional costs (hopefully reasonable).

## LOOK-AHEAD CARRY ADDER (1/6)

Consider the FA, where intermediate signals are labelled as P<sub>i</sub> and G<sub>i</sub>:

$$P_i = X_i \oplus Y_i$$
$$G_i = X_i \cdot Y_i$$



The outputs C<sub>i+1</sub>, S<sub>i</sub>, in terms of P<sub>i</sub>, G<sub>i</sub>, C<sub>i</sub> are:

$$S_{i} = P_{i} \oplus C_{i} \qquad \dots (1)$$

$$C_{i+1} = G_{i} + P_{i} \cdot C_{i} \qquad \dots (2)$$

Looking at equation (2):

 $G_i = X_i \cdot Y_i$  is a *carry generate* signal, and  $P_i = X_i \oplus Y_i$  is a *carry propagate* signal.

## LOOK-AHEAD CARRY ADDER (2/6)

For 4-bit ripple-carry adder, the equations for the four carry signals are:

$$C_{i+1} = G_i + P_i \cdot C_i$$

$$C_{i+2} = G_{i+1} + P_{i+1} \cdot C_{i+1}$$

$$C_{i+3} = G_{i+2} + P_{i+2} \cdot C_{i+2}$$

$$C_{i+4} = G_{i+3} + P_{i+3} \cdot C_{i+3}$$

These formulae are deeply nested, as shown here for C<sub>i+2</sub>:



4-level circuit for  $C_{i+2} = G_{i+1} + P_{i+1} \cdot C_{i+1}$ 

## LOOK-AHEAD CARRY ADDER (3/6)

- Nested formulae/gates cause more propagation delay.
- Reduce delay by expanding and flattening the formulae for carries. Example, for C<sub>i+2</sub>:

$$\begin{split} C_{i+2} &= G_{i+1} + P_{i+1} \cdot C_{i+1} \\ &= G_{i+1} + P_{i+1} \cdot (G_i + P_i \cdot C_i) \\ &= G_{i+1} + P_{i+1} \cdot G_i + P_{i+1} \cdot P_i \cdot C_i \end{split}$$

New faster circuit for C<sub>i+2</sub>:



## LOOK-AHEAD CARRY ADDER (4/6)

Other carry signals can be similarly flattened:

$$\begin{split} C_{i+3} &= G_{i+2} + P_{i+2} \cdot C_{i+2} \\ &= G_{i+2} + P_{i+2} \cdot (G_{i+1} + P_{i+1} \cdot G_i + P_{i+1} \cdot P_i \cdot C_i) \\ &= G_{i+2} + P_{i+2} \cdot G_{i+1} + P_{i+2} \cdot P_{i+1} \cdot G_i + P_{i+2} \cdot P_{i+1} \cdot P_i \cdot C_i \\ C_{i+4} &= G_{i+3} + P_{i+3} \cdot C_{i+3} \\ &= G_{i+3} + P_{i+3} \cdot (G_{i+2} + P_{i+2} \cdot G_{i+1} + P_{i+2} \cdot P_{i+1} \cdot G_i + P_{i+2} \cdot P_{i+1} \cdot P_i \cdot C_i) \\ &= G_{i+3} + P_{i+3} \cdot G_{i+2} + P_{i+3} \cdot P_{i+2} \cdot G_{i+1} + P_{i+3} \cdot P_{i+2} \cdot P_{i+1} \cdot G_i + P_{i+3} \cdot P_{i+2} \cdot P_{i+1} \cdot P_i \cdot C_i \end{split}$$

- Note that formulae gets longer with higher carries.
- Also, all carries are two-level sum-of-products expressions, in terms of the generate signals Gs, the propagate signals Ps, and the first carry-in C<sub>i</sub>.

# LOOK-AHEAD CARRY ADDER (5/6)

We employ lookahead formula in this lookahead-carry adder circuit:



## LOOK-AHEAD CARRY ADDER (6/6)

- The 74182 IC chip allows faster lookahead adder to be built.
- Assuming gate delay is t, maximum propagation delay for circuit is hence 4t
  - t to get generate and propagate signals
  - 2t to get the carries
  - t for the sum signals

